Acetate Kinase Isozymes Confer Robustness in Acetate Metabolism

نویسندگان

  • Siu Hung Joshua Chan
  • Lasse Nørregaard
  • Christian Solem
  • Peter Ruhdal Jensen
چکیده

Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300 species but surprisingly, little work has been done to clarify whether this has any significance. In an attempt to gain further insight we have studied the two ACKs (AckA1, AckA2) encoded by two neighboring genes conserved in Lactococcus lactis (L. lactis) by analyzing protein sequences, characterizing transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. Consistently, growth experiments of mutant strains reveal that AckA1 has a higher capacity for acetate production which allows faster growth in an environment with high acetate concentration. Meanwhile, AckA2 is important for fast acetate-dependent growth at low concentration of acetate. The results demonstrate that the two ACKs have complementary physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an environment with varying concentrations of acetate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phorbol myristate acetate-induced Egr-1 expression is suppressed by phospholipase D isozymes in human glioma cells.

Early growth response-1 (Egr-1) is involved in the regulation of cell growth. Here, we found that overexpression of phospholipase D (PLD) isozymes decreased tumor promoter phorbol myristate acetate (PMA)-induced Egr-1 expression and transactivation in glioma cells. Suppression of PMA-induced Egr-1 was dependent on the expression level of PLD isozymes. Overexpression of catalytically inactive PL...

متن کامل

Regulation of acetate kinase isozymes and its importance for mixed-acid fermentation in Lactococcus lactis.

Acetate kinase (ACK) converts acetyl phosphate to acetate along with the generation of ATP in the pathway for mixed-acid fermentation in Lactococcus lactis. The reverse reaction yields acetyl phosphate for assimilation purposes. Remarkably, L. lactis has two ACK isozymes, and the corresponding genes are present in an operon. We purified both enzymes (AckA1 and AckA2) from L. lactis MG1363 and d...

متن کامل

Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase.

The neutrophil NADPH-oxidase can be activated by protein kinase C (PKC) agonists such as phorbol myristate acetate (PMA), resulting in superoxide anion release. This superoxide release is independent of phosphatidylinositol 3-kinase (PI 3-kinase) because the inhibitor wortmannin does not affect the response. In this study, PMA is shown to also induce a wortmannin-sensitive NADPH-oxidase activat...

متن کامل

Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2

The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) α and PKCβ1 exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. PKCα accompanied pErk1/2 to the n...

متن کامل

Use of cellulose acetate electrophoresis in the taxonomy of steinernematids (rhabditida, nematoda).

A steinernematid nematode was isolated from soil samples collected near St. John's, Newfoundland, Canada. On the basis of its morphometry and RFLPs in ribosomal DNA spacer, it was designated as a new strain, NF, of Steinernema feltiae. Cellulose acetate electrophoresis was used to separate isozymes of eight enzymes in infective juveniles of S. feltiae NF as well as four other isolates: S. felti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014